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ABSTRACT 

 

In recent years, most studies on predicting the outcome 

of games faced two main issues. Firstly, player statistics 

recorded after the game are used to predict the result. 

Secondly, the analysis and prediction are based on the 

team’s average performance. Furthermore, these studies 

primarily employ conventional statistical methods for 

prediction, without considering the correlations between 

the data, leading to poor performance in predicting 

outcomes. This paper proposes a method based on a time 

series model and graph neural network to predict the 

outcomes of playoff games. Firstly, a graph neural model 

is used where each player is a node, and the predicted 

player performance from the time series model is used as 

the node features. The positional relationships of players 

in a team are the edges. Secondly, a graph neural network 

model is trained for prediction. From the experimental 

results on the National Basketball Association (NBA) 

data for the 2020-2021 season, the prediction accuracy of 

the proposed method reached 76.9%. This shows the 

effectiveness of the proposed method for predicting the 

outcome of games. 

 

Keywords: Player performance prediction, NBA game 

outcome prediction, graph neural network, machine 

learning. 

 

1. INTRODUCTION 

 

With the booming development of the sports economy, 

the NBA has become one of the fastest-growing 

industries worldwide. Existing game outcome 

predictions mainly rely on post-game data, neglecting the 

importance of pre-game data for prediction. Furthermore, 

most current studies use average team data for prediction, 

lacking consideration of individual player performance. 

Therefore, they fail to address two major issues in 

predicting team outcomes: (1) insufficient pre-game 

player performance prediction and (2) lack of attention to 

interactions between players. To address these problems, 

we propose using Gated Recurrent Unit (GRU) and 

Graph Neural Networks (GNN) from deep learning to 

improve prediction accuracy. 

Our contributions are as follows: Firstly, for data 

prediction, we use time series models to predict player 

performance before the game, instead of traditional 

mathematical calculations, providing more realistic game 

outcome predictions. Secondly, this study utilizes the 

performance data of all participating players and applies 

graph neural networks for game prediction for the first 

time, achieving an accuracy of 76.9%, surpassing 

existing methods. 

 

2. RELATED WORK 

 

Due to the extensive amount of statistical data available 

for NBA games, there has been significant related 

research. In 2015, Greene [1] utilized a comprehensive 

data model to estimate the NBA draft rankings of college 

rookies. This study highlighted the use of detailed 

statistical analysis and data modeling to enhance the 

understanding of player potential in the NBA draft. In 

2019, Hu et al. [2] used neural networks to predict the 

MVP of the NBA season. In 2021, Sarlis et al. [3] applied 

deep learning to evaluate how injuries affect individual 

player performance and overall team results. In 2024, 

Farghaly et al. [4] used various machine learning 

methods to explore the likelihood of lower body muscle 

injuries in NBA players and analyzed various factors 

affecting injury risk. Numerous studies have used spatial 

and temporal data, deep learning, ensemble learning, and 

statistical methods to predict playoff outcomes, player 

injuries, and draft rankings. This study focuses on 

predicting NBA game outcomes, and the related 

literature can be categorized into three main areas: 

basketball game outcome prediction, feature selection, 

and the application of GNN models in sports events. 

 

2.1 Basketball Game Outcome Prediction 

Game outcome prediction can be considered a binary 

classification task. Hu et al. [5] used numerical analysis 

to study the differences in home and away wins, 

calculating the outcome of the 1996-1997 championships 



using weighted likelihood. Miljković et al. [6] divided 

game data into home and away games, using Naïve Bayes 

and multivariate linear regression as classification 

models, achieving an accuracy of 67%. Cao [7] used data 

from the 2005-06 to 2009-10 seasons for training and 

predicted the 2010-11 season, using models such as 

Naïve Bayes Classification, SVM, and Logistic 

Regression, reaching an accuracy of 69.67%. 

Pai et al. [8] proposed an HSVMDT framework, which 

combines SVM and Decision Tree models, achieving an 

accuracy of 85.2%. Jain et al. [9] proposed a Hybrid 

Fuzzy-SVM (HFSVM) to reduce noise in the data, which 

negatively affects SVM performance, and used CFS [10] 

for feature selection, achieving an accuracy of 88.26%. 

Horvat et al. [11] experimented with multiple seasons 

worth of data using methods such as Decision Tree, K-

NN algorithm, and Random Forest, achieving an 

accuracy of 60.8%. Osken et al. [12] used K-Means and 

C-Means clustering to identify player types, training 

prediction models based on cluster member capabilities. 

Their method achieved a prediction accuracy of 76% 

over five NBA seasons. In Wang’s study [13], feature 

engineering was used to improve the model's prediction 

accuracy by analyzing and selecting key metrics. The 

study found that field goal percentage (FG%), three-point 

percentage, and steals were key statistics for predicting 

game outcomes. They used Random Forest and DNN for 

prediction, achieving an accuracy of 74%. Adam et al. 

[14] used first-half statistics and SVM for outcome 

prediction, achieving an accuracy of about 66.67%. 

 

2.2 GNNs Methodology Used in Sports 

Graph Neural Networks (GNNs) are neural networks 

designed to handle graph-structured data, leveraging the 

relationships and interdependencies between nodes and 

edges for information propagation and learning. 

Xenopoulos [15] used GNNs to predict outcomes of NFL 

and CSGO games, reducing loss by 9% and 20%, 

respectively. Zhao et al. [16] combined GCN with RF 

algorithms to enhance prediction accuracy, achieving an 

accuracy of approximately 71.54% for NBA predictions. 

Luo and Krishnamurthy [17] proposed a deep learning 

method called GATv2-TCN, exploring the use of GAT 

and Temporal Convolutional Networks for predicting 

sports performance. 

 

2.3 Prediction Based on Feature Selection 

Due to the numerous attributes of NBA data, feature 

selection is crucial for prediction performance. Thabtah 

et al. [18] added home and away factors to traditional data, 

using Multiple Regression [19], CFS, and the RIPPER 

algorithm [20] for feature selection. The best-performing 

model was a combination of RIPPER and Bayes, 

achieving an accuracy of 83%. They also found that the 

feature "DRB" was common in all five selected groups, 

indicating its importance in NBA game outcome 

prediction. 

 

 

3. METHODOLOGY 

 

The methodology proposed in this study comprises of 

two components. The first component involves 

predicting player performance using a time series model. 

Since we cannot obtain player performance before the 

game starts, we need to predict the performance of the 

players based on their past performances. The second 

component utilizes a graph neural network (GNN) to 

predict the outcome of the playoffs. Prior to making 

predictions, we will use feature selection to identify the 

key player performance features that most affect the 

game outcome. 

 
Figure 1. System process flow 

 

The system process is illustrated in Figure 1. This study 

comprises three main steps: player performance 

prediction, feature selection, and game outcome 

prediction. First, we standardize the features and employ 

a GRU model [21] to predict player performance, using 

data from multiple previous games as input to calculate 

the output of a single feature and predict the player's 

performance for the next game. Mean squared error 

(MSE) is employed to evaluate the time series model, 

which is the sum of the squares of the differences 

between predicted and actual values. Advanced data 

features, such as field goal percentage (FG%) = field 

goals made (FG) / field goals attempted (FGA), are 

calculated from other data and are not predicted by the 

time series model. 

 

3.1 Player Performance Prediction Model 

Before the game begins, it is impossible to determine 

how players will perform. Thus, predicting player 

performance is a key factor. Observing past data, we find 

that player performance tends to maintain a certain trend 

over time. Therefore, we treat player performance 

prediction as a time series forecasting task. The model’s 

input is the player's performance data, which must be 

transformed into the format (n, m, k) to train the GRU. 

Here, n represents the number of games in the input batch, 

m is the size of the sliding window, and k is the player of 

performance features. The transformed data is then fed 

into the time series model to train the GRU. After passing 

through a linear layer, the GRU's output vector is 

converted into real values to predict player performance 

for the subsequent (n+1) game. Since there are a total of 

21 features, the prediction process is repeated 21 times to 

complete the forecast of player performance. The 

proposed architecture is shown in Figure 2. 

 



 
Figure 2. Player Performance Prediction Architecture 

 

In each iteration, only one feature is predicted. The 

sliding window method utilizes data from the preceding 

n games to predict player performance in game n+1. 

Figure 3 provides an example of using the first three 

games' player performances to predict the performance 

for the fourth game, where 𝑔𝑖  represents the i-th game 

and i ∈ [1, n]. 

 
Figure 3. Sliding Window Illustration 

 

3.2 Feature Selection 

The publicly available player data provided by the NBA 

is categorized into traditional and advanced data. 

Advanced data is calculated from traditional data, but the 

NBA does not disclose the calculation methods. 

Therefore, the time series model cannot predict advanced 

data, and this study utilizes traditional data for 

experiments such as assist rate (AST%), total three-

pointers (TPA), and offensive rebounds (ORB) etc." After 

predicting the player performance data, feature selection 

is conducted to determine which player features are most 

important for predicting the game's outcome. Support 

Vector Machine (SVM) is used for this purpose. 

 

3.3 Playoff Outcomes Prediction 

In a game, players' contributions to the final outcome 

vary, and it is crucial to identify the key players and the 

relationships between them. This paper proposes the 

Graph Attention Convolutional Network (GATCN), a 

framework that integrates the GAT [22] and GCN [23] 

for game outcome prediction, as shown in Figure 4. 

 
Figure 4. GATCN Architecture 

 

Player performance data is converted into a graph format 

and used as input for the GATCN. The GAT model 

computes the one-hop feature vectors, updating node 

feature vectors through attention coefficients. The GCN 

aggregates both local and global connections between 

nodes to generate updated node representations. These 

representations are subsequently transformed into a 

graph-level representation using mean pooling, and 

finally, a softmax function outputs the game's predicted 

outcome. 

 

3.3.1 Player-to-Player Graph 

To accurately assess the influence of each player, we 

propose a Player-to-Player Graph construction method. 

This method creates a graph based on the players who 

participated in the game, representing their relationships. 

Given a graph G=(V,E), where G represents a game, V is 

the set of players p, expressed as 𝑉 = {𝑝1 , 𝑝2, … , 𝑝𝑛}, 𝑛 ∈
ℝ, where n is the number of players on a team. The edges 

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}, 𝑛 ∈ ℝ reflect the relationships 

between players. Since the NBA does not officially 

provide information on playing time for starting and 

bench players, we construct edges based on team 

relationships, forming a fully connected graph, as shown 

in Figure 5. 

 
Figure 5. Player-to-Player Graph Illustration 

 

The edges are represented by an adjacency matrix A, 

where 𝐴𝑖𝑗 represents the edge between players 𝑝𝑖  and 𝑝𝑗, 

where 𝑖, 𝑗 ∈ ℝ. Edges are established between players on 

the same team, as defined in Equation (1). If 𝑝𝑖  and 𝑝𝑗 

are on the same team, the value of the adjacency matrix 

𝐴𝑖𝑗  is 1; if they are not on the same team, 𝐴𝑖𝑗  is 0, 



forming an undirected graph. The node features represent 

each the players' performance in the match. 

𝑓(x) = {
1, 𝑖𝑓 (𝑝𝑖 , 𝑝𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗

0, others
 (1) 

  

3.3.2Graph Attention Convolution Network (GATCN) 

The proposed GATCN integrates techniques from both 

GAT and GCN. During the propagation process, 

GATCN utilizes a self-attention mechanism to compute 

attention coefficients between each node and its 

neighbors, thereby determining the importance of each 

node, as defined in Equation (2). 

𝛼𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⃑𝑇[𝐖ℎ⃑⃑𝑖 ∥ 𝐖ℎ⃑⃑𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⃑𝑇[𝐖ℎ⃑⃑𝑖 ∥ 𝐖ℎ⃑⃑𝑘]))𝑘∈𝑁𝑖

 (2) 

Here, 𝛼𝑖𝑗 denotes the attention coefficient between nodes 

(i, j), where 𝑖 , 𝑗 ∈ ℝ. The LeakyReLU function [24] is 

applied as an activation function to adjust the weights. 

We employ multi-head self-attention, enabling each head 

to focus on both local and global information. To 

integrate the feature vectors generated by each head, we 

concatenate them as described in Equation (3). 

ℎ𝑖
′ =∥𝑘=1

𝐾 𝜎 (∑ 𝛼𝑖𝑗
𝑘

𝑗∈𝑁𝑖

𝑊𝑘ℎ𝑗) (3) 

Here, ∥  represents concatenation, K is the number of 

heads, and 𝜎 represents the sigmoid activation function. 

𝛼𝑖𝑗
𝑘  denotes the attention coefficient between nodes i and 

j in the k-th head, 𝑊𝑘is the linear transformation weight 

matrix for the k-th head, and ℎ𝑖
′  is the new attention 

coefficient after concatenating the attention outputs from 

each head, representing the weight of each player in the 

game. Since the graph has local connectivity, we employ 

convolution to propagate features. At this stage, the 

features are already computed by GAT, so they include 

the 1-hop neighbors' attention. The GCN subsequently 

aggregates the feature information from all neighbors and 

the node itself. After pooling the updated node feature 

vectors, we transform them into graph-level feature 

vectors using mean pooling, defined in Equation (4). 

𝑥𝑖 =
1

𝑁𝑖

∑ ℎ𝑖
′

𝑁𝑖

𝑛=1

 (4) 

Here, 𝑁𝑖  represents the number of neighboring nodes, 

and  𝑥𝑖  is the graph embedding representing all player 

information in a game. After passing through the softmax 

function, we obtain the final output, which is a two-

dimensional vector representing the probabilities of 

winning or losing the game. During training, we apply 

the cross-entropy loss function to prevent overfitting by 

calculating the loss 𝐻𝑖  at each training iteration, as 

defined in Equation (5). 

𝐻𝑖 = ∑ ∑ −𝑦𝑐 log2(𝑟𝑐,𝑖)

𝑛

𝑖=1

𝐶

𝑐=𝑖

 (5) 

Here, C represents the number of categories (win/loss), n 

is the total number of samples, 𝑦𝑐 is the one-hot encoded 

label for the i-th data, and 𝑟𝑐,𝑖  denotes the predicted 

probability for class c for the i-th sample. 

 

4. EXPERIMENTS 

 

4.1 NBA Dataset 

The data used in this study was collected through web 

scraping from www.basketball-reference.com for the 

2020-2021 NBA season. Due to the impact of COVID-

19, each team played only 72 regular-season games, 

totaling 1,080 games. The playoffs comprised 91 games. 

As each game involves two teams, with one win and one 

loss, this results in a total of 2,160 data points. The 

dataset includes traditional player statistics, advanced 

statistics, team averages, and game outcomes (labels). To 

avoid redundant predictions, we focus on home team 

player performance as the prediction target, with an 8:2 

split between training and validation sets. 

 

4.2 Evaluation Metrics 

We evaluate the model's performance using accuracy, 

precision, recall, and F1-score to assess its effectiveness 

and usability. 

 

4.3 Player Parameters 

Since our model predicts game outcomes based on player 

performance, the number of players participating in the 

game is a crucial factor. We analyzed data from 681 

playoff games spanning the 2016–2019 seasons. 

According to NBA statistics, we found that bench players 

typically play for 15–20 minutes, with the most common 

number of players per game being 7, observed in 280 

games, followed by 8 players in 203 games. Therefore, 

we set the number of players in the model to either 7 or 8 

for our experiments. 

 

4.4 Model Comparison 

To verify the effectiveness of the proposed model, we 

compared it with the following models: 

• Baseline: This model combines methods from two 

studies. First, it applies Jones' [25] 3-game-average 

method to predict player performance, followed by 

XGBOOST for feature selection. Next, Thabtah et 

al.'s [18] Artificial Neural Network (ANN) model is 

used to predict game outcomes. 

• GAT: Based on the framework proposed by 

Velickovic et al. [22], this model incorporates 

attention mechanisms into graph neural networks. It 

focuses on a single node and its 1-hop neighbors, 

calculating attention coefficients to update node 

feature vectors. 

• GCN: Proposed by Yao et al. [23], this model 

employs graph convolutional networks for graph 

classification. It was originally applied to text 

classification. The architecture includes two 

convolution layers and two fully connected layers. 

The GCN produces 64-dimensional vectors, which 

are then reduced to 2-dimensional vectors via 

softmax for binary classification. 

• DGCNN: An improved GCN model proposed by 

Zhang et al. [26], DGCNN consists of four GCN 

layers. It employs sort pooling to rank node roles in 



the graph based on their structural positions, 

followed by a traditional 1-D convolution. The 

output is then processed through a linear layer for 

classification. 

 

4.5 Experimental Results 

Table 1 shows the experimental results comparing the 

proposed method with other models: 

 

Table 1. Summary of Experimental Results 

Model Accuracy Precision Recall F1-

score 
Baseline 0.593 0.886 0.602 0.717 

SVM + GAT 0.736 0.754 0.784 0.769 

SVM + GCN 0.736 0.792 0.763 0.777 

SVM + 

DGCNN 
0.747 0.773 0.788 0.781 

GATCN 0.652 0.769 0.666 0.714 

SVM + 

GATCN 
0.769 0.811 0.796 0.803 

 

The experimental results indicate that our proposed 

model, which employs a sliding window of 3 games as 

input to the GRU for player performance prediction and 

constructs graphs with 8 players, achieves the highest 

performance in accuracy (0.769), recall (0.796), and F1-

score (0.803). The findings demonstrate that the GATCN 

model, after feature selection using SVM, is more 

effective at predicting game outcomes than other models. 
By aggregating each node’s one-hop neighbors through 

GAT and updating node features with weighted 

averaging, GATCN further incorporates the Laplacian 

matrix operation via GCN to aggregate all neighboring 

features, surpassing models that utilize only GAT or 

GCN. Specifically, GATCN outperforms both GAT and 

GCN models in accuracy by 3.3%. This performance 

demonstrates that GATCN effectively combines the 

strengths of GAT and GCN. The DGCNN model shows 

an F1-score of 0.781, utilizing multi-layer GCNs and sort 

pooling to compute the relationships between nodes and 

neighbors. However, without the help of attention 

coefficients, its performance is still lower than GATCN. 

 

5. ANALYSIS AND DISCUSSION 

 

5.1 Analysis of Feature Selection 

The selection of player data for features is a critical factor 

in the model's performance. We applied SVM to evaluate 

the importance of each feature, as illustrated in Figure 6. 

Features with values close to 1 are associated with 

winning, while features close to -1 are associated with 

losing. We selected [TRB, STL, PTS, FG%, BLK, FT%, 

+/-, 3P%, ORB, DRB, FGA, TOV, FG, FTA, 3P, FT] as 

game features, with TRB having the highest value, 

indicating a strong correlation with winning, and ORB 

has the lowest value, indicating a strong correlation with 

losing. Features such as [MP, AST, PF, 3PA] were 

excluded as their values were close to 0, suggesting 

minimal relevance to game outcomes. 

 
Figure 6. SVM Feature Importance Scores 

 

In previous studies, common feature selection methods 

include the chi-square test, Random Forest (RF), and 

XGBoost. Since these methods calculate feature scores, 

this study compares feature selection methods by 

selecting features with scores higher than the mean [27]. 

In addition to individual player data, the number of 

players used to form edges is also a key parameter. As 

noted in the previous section, the most commonly used 

number of players per game is 7 to 8. Accordingly, we 

conducted experiments using 7 and 8 players. To 

determine the best features, we applied the four feature 

selection methods mentioned above to player data 

generated with various sliding window sizes and tested 

them with different numbers of players using the 

GATCN model. The sliding windows are represented by 

the number of games. The experimental results are as 

follows. 

 

Table 2. Experimental Results of Feature Engineering 
Game Players Method Accuracy Precision Recall 

2 8 Baseline 0.652 0.692 0.692 

2 8 SVM 0.681 0.717 0.730 

3 8 SVM 0.769 0.811 0.796 

3 8 XGBOOST 0.758 0.811 0.781 

4 8 SVM 0.637 0.679 0.692 

4 8 XGBOOST 0.626 0.660 0.686 

 

From Table 2, it is evident that constructing graphs with 

8 players and using 3 games as GRU input yields superior 

accuracy, precision, recall, and F1-score compared to 

using 2-game or 4-game as input. Notably, performance 

with 4-game input is the lowest, slightly underperforms 

the 2-game input in both XGBoost and RF models. This 

suggests that player performance does not exhibit long-

term patterns conducive to GRU learning, with 3 games 

proving to be the most optimal input. Using SVM for 

feature selection achieved the highest accuracy, recall, 

and F1-score values of 0.769, 0.796, and 0.803, 

respectively. However, in terms of precision, the 2-game 

and 4-game inputs with RF feature selection achieved a 

precision of 1. Closer inspection reveals that this outcome 

results from all predictions favoring game victories, 

yielding the highest precision but a significantly lower 

accuracy of 0.582. 

Regarding feature selection methods, SVM consistently 

provided the best performance, followed by XGBoost. 

The features identified by these two methods were 

relatively similar, with 8 common features: TRB, STL, 

PTS, FG%, BLK, FT%, +/-, and 3P%. As a result, their 

performance across all four-evaluation metrics was 

relatively close. XGBoost determines feature importance 

based on gain, which reduces model entropy and 

enhances crucial information, leading to more precise 



feature importance. In contrast, Random Forest 

calculates importance by aggregating the Gini index 

across multiple trees. Variations in tree splitting due to 

differences in the Gini index contributed to inconsistent 

results in this experiment. Lastly, the chi-square test, 

which is more suited to categorical data analysis, 

struggled to identify key features in this dataset due to 

feature similarity between winning and losing games, as 

calculating expected values did not reveal distinguishing 

characteristics. 

 

5.2 Analysis of Time Series Model 

We compare the performance of two well-known time 

series models, GRU and LSTM. Both models are trained 

with a sliding window size of 3 games, 8 players, and 50 

epochs. The optimizer used is Adam [28], and the loss 

function is MSE. After predicting player performance 

with each model, we use GATCN to predict the game 

outcomes. According to the experimental results, we can 

see that GRU achieves convergence across all features by 

the 15th epoch, while LSTM's feature converges around 

the 20th epoch. Both models employ SVM-selected 

features for prediction. The GRU model outperforms 

LSTM across all evaluation metrics, demonstrating 

significant improvement by replacing the input and forget 

gate with a single update gate. During calculations, GRU 

integrates hidden layer information into unit state 

calculations, allowing for more comprehensive 

information transfer. In contrast, LSTM separates the 

calculations of the hidden layer and unit state, 

transferring only partial information, which leads to 

differences in accuracy and performance. Furthermore, 

GRU’s simpler structure reduces training time by 2.5%. 

 

5.3 Analysis of GATCN 

To assess the effectiveness of our proposed GATCN 

model, we compared it with the models proposed by Jain 

and Kaur [9] and Zhao et al. [16]. Since Jain et al.'s 

HFSVM model uses the 2015-2016 NBA season for 

experiments, we also applied our proposed model to the 

2015-2016 season for consistency in comparison. The 

experimental results showed that GATCN achieved an 

accuracy of 0.9302, while HFSVM achieved 0.8826, and 

Zhao's model had a maximum accuracy of 0.707. The 

results indicate that the proposed GATCN improves 

accuracy by 4.8% over Jain et al.'s model and by 22% 

over Zhao's model. This demonstrates that for predicting 

NBA game outcomes, player performance data provides 

more precise information than team-level data alone. 

 

6. CONCLUSION AND FUTURE WORK 

 

In this study, we proposed a method for predicting NBA 

playoff outcomes. First, we used GRU to predict future 

player performance, treating each player as a node and 

connecting all nodes to form a graph. Feature selection 

was conducted using SVM, and the final prediction was 

made with the proposed Graph Attention Convolutional 

Network (GATCN). Compared to solely predicting based 

on player performance, incorporating structural 

relationships between players resulted in more accurate 

model predictions. The experimental results show that 

the proposed GATCN model outperforming other state-

of-the-art methods. 

In the future, we aim to enhance the construction of 

player-to-player graphs by considering specific features 

to identify which player combinations most influence 

game outcomes. This approach could be applied not only 

to game outcome prediction but also to other areas such 

as team formation and player trades. Regarding model 

improvements, since the attention mechanism in GAT 

aggregates only 1-hop neighbors, we plan to refine the 

attention mechanism to capture more extensive 

interactions and further improve model accuracy. These 

are some potential directions for advancing the model. 
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