

Predicting the Outcome of Games based on Graph Neural Networks

1Yen-Tsang Wu, 1,* Jenq-Haur Wang, and 2Ning Chien

 1
 Department of Computer Science and Information Engineering,

National Taipei University of Technology, Taipei, Taiwan,
*E-mail: buddyswu@gmail.com; jhwang@ntut.edu.tw

2
 Chunghwa Telecom Laboratories Advanced Technology Laboratory, Taiwan

E-mail: nickchien@cht.com.tw

ABSTRACT

In recent years, most studies on predicting the outcome

of games faced two main issues. Firstly, player statistics

recorded after the game are used to predict the result.

Secondly, the analysis and prediction are based on the

team’s average performance. Furthermore, these studies

primarily employ conventional statistical methods for

prediction, without considering the correlations between

the data, leading to poor performance in predicting

outcomes. This paper proposes a method based on a time

series model and graph neural network to predict the

outcomes of playoff games. Firstly, a graph neural model

is used where each player is a node, and the predicted

player performance from the time series model is used as

the node features. The positional relationships of players

in a team are the edges. Secondly, a graph neural network

model is trained for prediction. From the experimental

results on the National Basketball Association (NBA)

data for the 2020-2021 season, the prediction accuracy of

the proposed method reached 76.9%. This shows the

effectiveness of the proposed method for predicting the

outcome of games.

Keywords: Player performance prediction, NBA game

outcome prediction, graph neural network, machine

learning.

1. INTRODUCTION

With the booming development of the sports economy,

the NBA has become one of the fastest-growing

industries worldwide. Existing game outcome

predictions mainly rely on post-game data, neglecting the

importance of pre-game data for prediction. Furthermore,

most current studies use average team data for prediction,

lacking consideration of individual player performance.

Therefore, they fail to address two major issues in

predicting team outcomes: (1) insufficient pre-game

player performance prediction and (2) lack of attention to

interactions between players. To address these problems,

we propose using Gated Recurrent Unit (GRU) and

Graph Neural Networks (GNN) from deep learning to

improve prediction accuracy.

Our contributions are as follows: Firstly, for data

prediction, we use time series models to predict player

performance before the game, instead of traditional

mathematical calculations, providing more realistic game

outcome predictions. Secondly, this study utilizes the

performance data of all participating players and applies

graph neural networks for game prediction for the first

time, achieving an accuracy of 76.9%, surpassing

existing methods.

2. RELATED WORK

Due to the extensive amount of statistical data available

for NBA games, there has been significant related

research. In 2015, Greene [1] utilized a comprehensive

data model to estimate the NBA draft rankings of college

rookies. This study highlighted the use of detailed

statistical analysis and data modeling to enhance the

understanding of player potential in the NBA draft. In

2019, Hu et al. [2] used neural networks to predict the

MVP of the NBA season. In 2021, Sarlis et al. [3] applied

deep learning to evaluate how injuries affect individual

player performance and overall team results. In 2024,

Farghaly et al. [4] used various machine learning

methods to explore the likelihood of lower body muscle

injuries in NBA players and analyzed various factors

affecting injury risk. Numerous studies have used spatial

and temporal data, deep learning, ensemble learning, and

statistical methods to predict playoff outcomes, player

injuries, and draft rankings. This study focuses on

predicting NBA game outcomes, and the related

literature can be categorized into three main areas:

basketball game outcome prediction, feature selection,

and the application of GNN models in sports events.

2.1 Basketball Game Outcome Prediction

Game outcome prediction can be considered a binary

classification task. Hu et al. [5] used numerical analysis

to study the differences in home and away wins,

calculating the outcome of the 1996-1997 championships

using weighted likelihood. Miljković et al. [6] divided

game data into home and away games, using Naïve Bayes

and multivariate linear regression as classification

models, achieving an accuracy of 67%. Cao [7] used data

from the 2005-06 to 2009-10 seasons for training and

predicted the 2010-11 season, using models such as

Naïve Bayes Classification, SVM, and Logistic

Regression, reaching an accuracy of 69.67%.

Pai et al. [8] proposed an HSVMDT framework, which

combines SVM and Decision Tree models, achieving an

accuracy of 85.2%. Jain et al. [9] proposed a Hybrid

Fuzzy-SVM (HFSVM) to reduce noise in the data, which

negatively affects SVM performance, and used CFS [10]

for feature selection, achieving an accuracy of 88.26%.

Horvat et al. [11] experimented with multiple seasons

worth of data using methods such as Decision Tree, K-

NN algorithm, and Random Forest, achieving an

accuracy of 60.8%. Osken et al. [12] used K-Means and

C-Means clustering to identify player types, training

prediction models based on cluster member capabilities.

Their method achieved a prediction accuracy of 76%

over five NBA seasons. In Wang’s study [13], feature

engineering was used to improve the model's prediction

accuracy by analyzing and selecting key metrics. The

study found that field goal percentage (FG%), three-point

percentage, and steals were key statistics for predicting

game outcomes. They used Random Forest and DNN for

prediction, achieving an accuracy of 74%. Adam et al.

[14] used first-half statistics and SVM for outcome

prediction, achieving an accuracy of about 66.67%.

2.2 GNNs Methodology Used in Sports

Graph Neural Networks (GNNs) are neural networks

designed to handle graph-structured data, leveraging the

relationships and interdependencies between nodes and

edges for information propagation and learning.

Xenopoulos [15] used GNNs to predict outcomes of NFL

and CSGO games, reducing loss by 9% and 20%,

respectively. Zhao et al. [16] combined GCN with RF

algorithms to enhance prediction accuracy, achieving an

accuracy of approximately 71.54% for NBA predictions.

Luo and Krishnamurthy [17] proposed a deep learning

method called GATv2-TCN, exploring the use of GAT

and Temporal Convolutional Networks for predicting

sports performance.

2.3 Prediction Based on Feature Selection

Due to the numerous attributes of NBA data, feature

selection is crucial for prediction performance. Thabtah

et al. [18] added home and away factors to traditional data,

using Multiple Regression [19], CFS, and the RIPPER

algorithm [20] for feature selection. The best-performing

model was a combination of RIPPER and Bayes,

achieving an accuracy of 83%. They also found that the

feature "DRB" was common in all five selected groups,

indicating its importance in NBA game outcome

prediction.

3. METHODOLOGY

The methodology proposed in this study comprises of

two components. The first component involves

predicting player performance using a time series model.

Since we cannot obtain player performance before the

game starts, we need to predict the performance of the

players based on their past performances. The second

component utilizes a graph neural network (GNN) to

predict the outcome of the playoffs. Prior to making

predictions, we will use feature selection to identify the

key player performance features that most affect the

game outcome.

Figure 1. System process flow

The system process is illustrated in Figure 1. This study

comprises three main steps: player performance

prediction, feature selection, and game outcome

prediction. First, we standardize the features and employ

a GRU model [21] to predict player performance, using

data from multiple previous games as input to calculate

the output of a single feature and predict the player's

performance for the next game. Mean squared error

(MSE) is employed to evaluate the time series model,

which is the sum of the squares of the differences

between predicted and actual values. Advanced data

features, such as field goal percentage (FG%) = field

goals made (FG) / field goals attempted (FGA), are

calculated from other data and are not predicted by the

time series model.

3.1 Player Performance Prediction Model

Before the game begins, it is impossible to determine

how players will perform. Thus, predicting player

performance is a key factor. Observing past data, we find

that player performance tends to maintain a certain trend

over time. Therefore, we treat player performance

prediction as a time series forecasting task. The model’s

input is the player's performance data, which must be

transformed into the format (n, m, k) to train the GRU.

Here, n represents the number of games in the input batch,

m is the size of the sliding window, and k is the player of

performance features. The transformed data is then fed

into the time series model to train the GRU. After passing

through a linear layer, the GRU's output vector is

converted into real values to predict player performance

for the subsequent (n+1) game. Since there are a total of

21 features, the prediction process is repeated 21 times to

complete the forecast of player performance. The

proposed architecture is shown in Figure 2.

Figure 2. Player Performance Prediction Architecture

In each iteration, only one feature is predicted. The

sliding window method utilizes data from the preceding

n games to predict player performance in game n+1.

Figure 3 provides an example of using the first three

games' player performances to predict the performance

for the fourth game, where 𝑔𝑖 represents the i-th game

and i ∈ [1, n].

Figure 3. Sliding Window Illustration

3.2 Feature Selection

The publicly available player data provided by the NBA

is categorized into traditional and advanced data.

Advanced data is calculated from traditional data, but the

NBA does not disclose the calculation methods.

Therefore, the time series model cannot predict advanced

data, and this study utilizes traditional data for

experiments such as assist rate (AST%), total three-

pointers (TPA), and offensive rebounds (ORB) etc." After

predicting the player performance data, feature selection

is conducted to determine which player features are most

important for predicting the game's outcome. Support

Vector Machine (SVM) is used for this purpose.

3.3 Playoff Outcomes Prediction

In a game, players' contributions to the final outcome

vary, and it is crucial to identify the key players and the

relationships between them. This paper proposes the

Graph Attention Convolutional Network (GATCN), a

framework that integrates the GAT [22] and GCN [23]

for game outcome prediction, as shown in Figure 4.

Figure 4. GATCN Architecture

Player performance data is converted into a graph format

and used as input for the GATCN. The GAT model

computes the one-hop feature vectors, updating node

feature vectors through attention coefficients. The GCN

aggregates both local and global connections between

nodes to generate updated node representations. These

representations are subsequently transformed into a

graph-level representation using mean pooling, and

finally, a softmax function outputs the game's predicted

outcome.

3.3.1 Player-to-Player Graph

To accurately assess the influence of each player, we

propose a Player-to-Player Graph construction method.

This method creates a graph based on the players who

participated in the game, representing their relationships.

Given a graph G=(V,E), where G represents a game, V is

the set of players p, expressed as 𝑉 = {𝑝1 , 𝑝2, … , 𝑝𝑛}, 𝑛 ∈
ℝ, where n is the number of players on a team. The edges

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}, 𝑛 ∈ ℝ reflect the relationships

between players. Since the NBA does not officially

provide information on playing time for starting and

bench players, we construct edges based on team

relationships, forming a fully connected graph, as shown

in Figure 5.

Figure 5. Player-to-Player Graph Illustration

The edges are represented by an adjacency matrix A,

where 𝐴𝑖𝑗 represents the edge between players 𝑝𝑖 and 𝑝𝑗,

where 𝑖, 𝑗 ∈ ℝ. Edges are established between players on

the same team, as defined in Equation (1). If 𝑝𝑖 and 𝑝𝑗

are on the same team, the value of the adjacency matrix

𝐴𝑖𝑗 is 1; if they are not on the same team, 𝐴𝑖𝑗 is 0,

forming an undirected graph. The node features represent

each the players' performance in the match.

𝑓(x) = {
1, 𝑖𝑓 (𝑝𝑖 , 𝑝𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗

0, others
 (1)

3.3.2Graph Attention Convolution Network (GATCN)

The proposed GATCN integrates techniques from both

GAT and GCN. During the propagation process,

GATCN utilizes a self-attention mechanism to compute

attention coefficients between each node and its

neighbors, thereby determining the importance of each

node, as defined in Equation (2).

𝛼𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⃑𝑇[𝐖ℎ⃑⃑𝑖 ∥ 𝐖ℎ⃑⃑𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⃑𝑇[𝐖ℎ⃑⃑𝑖 ∥ 𝐖ℎ⃑⃑𝑘]))𝑘∈𝑁𝑖

 (2)

Here, 𝛼𝑖𝑗 denotes the attention coefficient between nodes

(i, j), where 𝑖 , 𝑗 ∈ ℝ. The LeakyReLU function [24] is

applied as an activation function to adjust the weights.

We employ multi-head self-attention, enabling each head

to focus on both local and global information. To

integrate the feature vectors generated by each head, we

concatenate them as described in Equation (3).

ℎ𝑖
′ =∥𝑘=1

𝐾 𝜎 (∑ 𝛼𝑖𝑗
𝑘

𝑗∈𝑁𝑖

𝑊𝑘ℎ𝑗) (3)

Here, ∥ represents concatenation, K is the number of

heads, and 𝜎 represents the sigmoid activation function.

𝛼𝑖𝑗
𝑘 denotes the attention coefficient between nodes i and

j in the k-th head, 𝑊𝑘is the linear transformation weight

matrix for the k-th head, and ℎ𝑖
′ is the new attention

coefficient after concatenating the attention outputs from

each head, representing the weight of each player in the

game. Since the graph has local connectivity, we employ

convolution to propagate features. At this stage, the

features are already computed by GAT, so they include

the 1-hop neighbors' attention. The GCN subsequently

aggregates the feature information from all neighbors and

the node itself. After pooling the updated node feature

vectors, we transform them into graph-level feature

vectors using mean pooling, defined in Equation (4).

𝑥𝑖 =
1

𝑁𝑖

∑ ℎ𝑖
′

𝑁𝑖

𝑛=1

 (4)

Here, 𝑁𝑖 represents the number of neighboring nodes,

and 𝑥𝑖 is the graph embedding representing all player

information in a game. After passing through the softmax

function, we obtain the final output, which is a two-

dimensional vector representing the probabilities of

winning or losing the game. During training, we apply

the cross-entropy loss function to prevent overfitting by

calculating the loss 𝐻𝑖 at each training iteration, as

defined in Equation (5).

𝐻𝑖 = ∑ ∑ −𝑦𝑐 log2(𝑟𝑐,𝑖)

𝑛

𝑖=1

𝐶

𝑐=𝑖

 (5)

Here, C represents the number of categories (win/loss), n

is the total number of samples, 𝑦𝑐 is the one-hot encoded

label for the i-th data, and 𝑟𝑐,𝑖 denotes the predicted

probability for class c for the i-th sample.

4. EXPERIMENTS

4.1 NBA Dataset

The data used in this study was collected through web

scraping from www.basketball-reference.com for the

2020-2021 NBA season. Due to the impact of COVID-

19, each team played only 72 regular-season games,

totaling 1,080 games. The playoffs comprised 91 games.

As each game involves two teams, with one win and one

loss, this results in a total of 2,160 data points. The

dataset includes traditional player statistics, advanced

statistics, team averages, and game outcomes (labels). To

avoid redundant predictions, we focus on home team

player performance as the prediction target, with an 8:2

split between training and validation sets.

4.2 Evaluation Metrics

We evaluate the model's performance using accuracy,

precision, recall, and F1-score to assess its effectiveness

and usability.

4.3 Player Parameters

Since our model predicts game outcomes based on player

performance, the number of players participating in the

game is a crucial factor. We analyzed data from 681

playoff games spanning the 2016–2019 seasons.

According to NBA statistics, we found that bench players

typically play for 15–20 minutes, with the most common

number of players per game being 7, observed in 280

games, followed by 8 players in 203 games. Therefore,

we set the number of players in the model to either 7 or 8

for our experiments.

4.4 Model Comparison

To verify the effectiveness of the proposed model, we

compared it with the following models:

• Baseline: This model combines methods from two

studies. First, it applies Jones' [25] 3-game-average

method to predict player performance, followed by

XGBOOST for feature selection. Next, Thabtah et

al.'s [18] Artificial Neural Network (ANN) model is

used to predict game outcomes.

• GAT: Based on the framework proposed by

Velickovic et al. [22], this model incorporates

attention mechanisms into graph neural networks. It

focuses on a single node and its 1-hop neighbors,

calculating attention coefficients to update node

feature vectors.

• GCN: Proposed by Yao et al. [23], this model

employs graph convolutional networks for graph

classification. It was originally applied to text

classification. The architecture includes two

convolution layers and two fully connected layers.

The GCN produces 64-dimensional vectors, which

are then reduced to 2-dimensional vectors via

softmax for binary classification.

• DGCNN: An improved GCN model proposed by

Zhang et al. [26], DGCNN consists of four GCN

layers. It employs sort pooling to rank node roles in

the graph based on their structural positions,

followed by a traditional 1-D convolution. The

output is then processed through a linear layer for

classification.

4.5 Experimental Results

Table 1 shows the experimental results comparing the

proposed method with other models:

Table 1. Summary of Experimental Results

Model Accuracy Precision Recall F1-

score
Baseline 0.593 0.886 0.602 0.717

SVM + GAT 0.736 0.754 0.784 0.769

SVM + GCN 0.736 0.792 0.763 0.777

SVM +

DGCNN
0.747 0.773 0.788 0.781

GATCN 0.652 0.769 0.666 0.714

SVM +

GATCN
0.769 0.811 0.796 0.803

The experimental results indicate that our proposed

model, which employs a sliding window of 3 games as

input to the GRU for player performance prediction and

constructs graphs with 8 players, achieves the highest

performance in accuracy (0.769), recall (0.796), and F1-

score (0.803). The findings demonstrate that the GATCN

model, after feature selection using SVM, is more

effective at predicting game outcomes than other models.
By aggregating each node’s one-hop neighbors through

GAT and updating node features with weighted

averaging, GATCN further incorporates the Laplacian

matrix operation via GCN to aggregate all neighboring

features, surpassing models that utilize only GAT or

GCN. Specifically, GATCN outperforms both GAT and

GCN models in accuracy by 3.3%. This performance

demonstrates that GATCN effectively combines the

strengths of GAT and GCN. The DGCNN model shows

an F1-score of 0.781, utilizing multi-layer GCNs and sort

pooling to compute the relationships between nodes and

neighbors. However, without the help of attention

coefficients, its performance is still lower than GATCN.

5. ANALYSIS AND DISCUSSION

5.1 Analysis of Feature Selection

The selection of player data for features is a critical factor

in the model's performance. We applied SVM to evaluate

the importance of each feature, as illustrated in Figure 6.

Features with values close to 1 are associated with

winning, while features close to -1 are associated with

losing. We selected [TRB, STL, PTS, FG%, BLK, FT%,

+/-, 3P%, ORB, DRB, FGA, TOV, FG, FTA, 3P, FT] as

game features, with TRB having the highest value,

indicating a strong correlation with winning, and ORB

has the lowest value, indicating a strong correlation with

losing. Features such as [MP, AST, PF, 3PA] were

excluded as their values were close to 0, suggesting

minimal relevance to game outcomes.

Figure 6. SVM Feature Importance Scores

In previous studies, common feature selection methods

include the chi-square test, Random Forest (RF), and

XGBoost. Since these methods calculate feature scores,

this study compares feature selection methods by

selecting features with scores higher than the mean [27].

In addition to individual player data, the number of

players used to form edges is also a key parameter. As

noted in the previous section, the most commonly used

number of players per game is 7 to 8. Accordingly, we

conducted experiments using 7 and 8 players. To

determine the best features, we applied the four feature

selection methods mentioned above to player data

generated with various sliding window sizes and tested

them with different numbers of players using the

GATCN model. The sliding windows are represented by

the number of games. The experimental results are as

follows.

Table 2. Experimental Results of Feature Engineering
Game Players Method Accuracy Precision Recall

2 8 Baseline 0.652 0.692 0.692

2 8 SVM 0.681 0.717 0.730

3 8 SVM 0.769 0.811 0.796

3 8 XGBOOST 0.758 0.811 0.781

4 8 SVM 0.637 0.679 0.692

4 8 XGBOOST 0.626 0.660 0.686

From Table 2, it is evident that constructing graphs with

8 players and using 3 games as GRU input yields superior

accuracy, precision, recall, and F1-score compared to

using 2-game or 4-game as input. Notably, performance

with 4-game input is the lowest, slightly underperforms

the 2-game input in both XGBoost and RF models. This

suggests that player performance does not exhibit long-

term patterns conducive to GRU learning, with 3 games

proving to be the most optimal input. Using SVM for

feature selection achieved the highest accuracy, recall,

and F1-score values of 0.769, 0.796, and 0.803,

respectively. However, in terms of precision, the 2-game

and 4-game inputs with RF feature selection achieved a

precision of 1. Closer inspection reveals that this outcome

results from all predictions favoring game victories,

yielding the highest precision but a significantly lower

accuracy of 0.582.

Regarding feature selection methods, SVM consistently

provided the best performance, followed by XGBoost.

The features identified by these two methods were

relatively similar, with 8 common features: TRB, STL,

PTS, FG%, BLK, FT%, +/-, and 3P%. As a result, their

performance across all four-evaluation metrics was

relatively close. XGBoost determines feature importance

based on gain, which reduces model entropy and

enhances crucial information, leading to more precise

feature importance. In contrast, Random Forest

calculates importance by aggregating the Gini index

across multiple trees. Variations in tree splitting due to

differences in the Gini index contributed to inconsistent

results in this experiment. Lastly, the chi-square test,

which is more suited to categorical data analysis,

struggled to identify key features in this dataset due to

feature similarity between winning and losing games, as

calculating expected values did not reveal distinguishing

characteristics.

5.2 Analysis of Time Series Model

We compare the performance of two well-known time

series models, GRU and LSTM. Both models are trained

with a sliding window size of 3 games, 8 players, and 50

epochs. The optimizer used is Adam [28], and the loss

function is MSE. After predicting player performance

with each model, we use GATCN to predict the game

outcomes. According to the experimental results, we can

see that GRU achieves convergence across all features by

the 15th epoch, while LSTM's feature converges around

the 20th epoch. Both models employ SVM-selected

features for prediction. The GRU model outperforms

LSTM across all evaluation metrics, demonstrating

significant improvement by replacing the input and forget

gate with a single update gate. During calculations, GRU

integrates hidden layer information into unit state

calculations, allowing for more comprehensive

information transfer. In contrast, LSTM separates the

calculations of the hidden layer and unit state,

transferring only partial information, which leads to

differences in accuracy and performance. Furthermore,

GRU’s simpler structure reduces training time by 2.5%.

5.3 Analysis of GATCN

To assess the effectiveness of our proposed GATCN

model, we compared it with the models proposed by Jain

and Kaur [9] and Zhao et al. [16]. Since Jain et al.'s

HFSVM model uses the 2015-2016 NBA season for

experiments, we also applied our proposed model to the

2015-2016 season for consistency in comparison. The

experimental results showed that GATCN achieved an

accuracy of 0.9302, while HFSVM achieved 0.8826, and

Zhao's model had a maximum accuracy of 0.707. The

results indicate that the proposed GATCN improves

accuracy by 4.8% over Jain et al.'s model and by 22%

over Zhao's model. This demonstrates that for predicting

NBA game outcomes, player performance data provides

more precise information than team-level data alone.

6. CONCLUSION AND FUTURE WORK

In this study, we proposed a method for predicting NBA

playoff outcomes. First, we used GRU to predict future

player performance, treating each player as a node and

connecting all nodes to form a graph. Feature selection

was conducted using SVM, and the final prediction was

made with the proposed Graph Attention Convolutional

Network (GATCN). Compared to solely predicting based

on player performance, incorporating structural

relationships between players resulted in more accurate

model predictions. The experimental results show that

the proposed GATCN model outperforming other state-

of-the-art methods.

In the future, we aim to enhance the construction of

player-to-player graphs by considering specific features

to identify which player combinations most influence

game outcomes. This approach could be applied not only

to game outcome prediction but also to other areas such

as team formation and player trades. Regarding model

improvements, since the attention mechanism in GAT

aggregates only 1-hop neighbors, we plan to refine the

attention mechanism to capture more extensive

interactions and further improve model accuracy. These

are some potential directions for advancing the model.

REFERENCES

1. Greene, A.C., The Success of NBA Draft Picks: Can College

Careers Predict NBA Winners? 2015.

2. Hu, J., H. Zhang, and J. Qiu. Prediction of MVP attribution

in NBA regular match based on BP neural network model. in

Proceedings of the 2019 international conference on artificial

intelligence and advanced manufacturing. 2019.

3. Sarlis, V., et al., A data science approach analysing the

impact of injuries on basketball player and team performance.

2021. 99: p. 101750.

4. Farghaly, O. and P. Deshpande. Leveraging Machine

Learning to Predict National Basketball Association Player

Injuries. in 2024 IEEE International Workshop on Sport,

Technology and Research (STAR). 2024. IEEE.

5. Hu, F. and J.V.J.L.N.-M.S. Zidek, Forecasting NBA

basketball playoff outcomes using the weighted likelihood.

2004: p. 385-395.

6. Miljković, D., et al. The use of data mining for basketball

matches outcomes prediction. in IEEE 8th international

symposium on intelligent systems and informatics. 2010.

IEEE.

7. Cao, C., Sports data mining technology used in basketball

outcome prediction. 2012.

8. Pai, P.-F., et al., Analyzing basketball games by a support

vector machines with decision tree model. 2017. 28: p. 4159-

4167.

9. Jain, S. and H. Kaur. Machine learning approaches to predict

basketball game outcome. in 2017 3rd international

conference on advances in computing, communication &

automation (ICACCA)(Fall). 2017. IEEE.

10. Hall, M.A., Correlation-based feature selection for

machine learning. 1999, The University of Waikato.

11. Horvat, T., L. Havaš, and D.J.S. Srpak, The impact of

selecting a validation method in machine learning on

predicting basketball game outcomes. 2020. 12(3): p. 431.

12. Osken, C. and C.J.H. Onay, Predicting the winning team in

basketball: A novel approach. 2022. 8(12).

13. Wang, J. Predictive Analysis of NBA Game Outcomes

through Machine Learning. in Proceedings of the 6th

International Conference on Machine Learning and

Machine Intelligence. 2023.

14. Adam, C., P. Pantatosakis, and M. Tsagris, On predicting

an NBA game outcome from half-time statistics. 2024.

15. Xenopoulos, P. and C. Silva. Graph neural networks to

predict sports outcomes. in 2021 IEEE International

Conference on Big Data (Big Data). 2021. IEEE.

16. Zhao, K., C. Du, and G.J.E. Tan, Enhancing basketball

game outcome prediction through fused graph

convolutional networks and random forest algorithm. 2023.

25(5): p. 765.

17. Luo, R. and V.J.a.p.a. Krishnamurthy, Who You Play

Affects How You Play: Predicting Sports Performance

Using Graph Attention Networks With Temporal

Convolution. 2023.

18. Thabtah, F., L. Zhang, and N.J.A.o.D.S. Abdelhamid, NBA

game result prediction using feature analysis and machine

learning. 2019. 6(1): p. 103-116.

19. Berger, D.E.J.U.C.G.U., Introduction to multiple

regression. 2003.

20. Cohen, W.W., Fast effective rule induction, in Machine

learning proceedings 1995. 1995, Elsevier. p. 115-123.

21. Dey, R. and F.M. Salem. Gate-variants of gated recurrent

unit (GRU) neural networks. in 2017 IEEE 60th

international midwest symposium on circuits and systems

(MWSCAS). 2017. IEEE.

22. Veličković, P., et al., Graph attention networks. 2017.

23. Yao, L., C. Mao, and Y. Luo. Graph convolutional

networks for text classification. in Proceedings of the AAAI

conference on artificial intelligence. 2019.

24. Xu, B., Empirical evaluation of rectified activations in

convolutional network. arXiv preprint arXiv:1505.00853,

2015.

25. Jones, E.S., Predicting outcomes of NBA basketball games.

2016, North Dakota State University.

26. Zhang, M., et al. An end-to-end deep learning architecture

for graph classification. in Proceedings of the AAAI

conference on artificial intelligence. 2018.

27. Chen, W.-J., et al., Hybrid basketball game outcome

prediction model by integrating data mining methods for

the national basketball association. 2021. 23(4): p. 477.

28. Diederik, P.K.J., Adam: A method for stochastic

optimization. 2014.

